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Laminar flow past a sphere at high Mach number 
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Laminar hypersonic flow past a sphere is examined on the basis of the constant- 
density approximation. The Navier-Stokes equations governing the flow are 
reduced to a nearly parabolic form so that backward influence is essentially 
eliminated. Two methods of solution are then used on the resulting equations. 
The first method is the so-called series-truncation method (local similarity), 
and the second method is an implicit finite-difference method. The solutions 
from the two methods are compared for various values of the shock Reynolds 
number. These solutions are also compared with Lighthill’s inviscid constant- 
density solution for high-shock Reynolds number. 

1. Introduction 
The high-speed flow of a compressible fluid over a blunt body at moderate to 

low Reynolds numbers has attracted considerable attention owing to its applica- 
tion to re-entry problems. The flow regime where the Reynolds number is high 
enough for boundary-layer theory to apply can be handled without too much 
difficulty. This is done by obtaining a numerical solution to the inviscid flow 
equations describing the flow outside the boundary layer and using this solution 
to obtain the pressure distribution on the body surface. One can then use this 
pressure distribution to solve the boundary-layer equations by one of several 
methods available such as those of Fliigge-Lotz & Blottner (1962), Smith & 
Clutter (1963), and Davis & Flugge-Lotz (1964). (The last method is actually a 
modification of the method of Flugge-Lotz & Blottner.) Boundary-layer calcu- 
lations have been made for several flow cases by using the above methods. In  
particular one is referred to the hypersonic blunt-body solutions by Davis & 
Flugge-Lotz (1964). 

At lower Reynolds numbers one must contend with the fact that the first- 
order boundary-layer equations cannot be expected to give reasonable results. 
This can be corrected a t  the high Reynolds number end by solving the so-called 
second-order boundary-layer equations. This has also been done by Davis & 
Fliigge-Lotz (1964). This, however, becomes quite cumbersome and requires 
a considerable amount of computing time. If one needs to go to third-order 
boundary-layer theory for sufficient accuracy the situation would be even more 
difficult. One of the difficulties encountered is the problem of calculating the 
flow due to displacement thickness. This requires a direct solution for the inviscid 
flow past a body consisting of the original body thickened by the displacement 
thickness. Davis & Flugge-Lotz (1964) approximated this flow by shifting and 
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expanding the original body surface. Hoffman (1964) has approached the problem 
in a more exact manner by using the method of integral relations to calculate 
the flow field. Neither method is entirely satisfactory, the f i s t  because of in- 
accuracy and the second because of computational difficulties. Another difficulty 
with higher-order boundary layer theory is the fact that at  moderate Reynolds 
numbers the boundary-layer begins to spread into the entire shock layer, 
preventing one from clearly distinguishing separate inviscid and viscous regions 
(see Kao 1964) and there€ore limiting boundary-layer theory to higher Reynolds 
numbers than one might expect. 

For the reasons above one is presented with the idea of trying to solve the 
complete Navier-Stokes equations or a simplification of them which is valid in 
the whole shock layer. Davis & Flugge-Lotz (1964) have suggested such a 
simplification and a method for solving their simplified equations. The purpose 
of this paper is to present the results of an investigation which uses the method 
suggested by Davis & Flugge-Lotz (1964). 

For simplicity we shall consider the constant-density flow past a sphere. There 
are several reasons for this. Firstly, an exact inviscid solution forthe inviscid part 
of the flow field in the high-Reynolds-number flows is available for comparison 
due to Lighthill (1957). Secondly, the constant-density model will retain all 
the essential features for the numerical procedure of the solution of flow for the 
more complicated compressible fluid. Once the constant-density case has been 
solved the extension to the compressible case is direct, with no complications 
arising due to theory. For simplicity we shall also assume that the shock is a 
discontinuity even in the low-Reynolds-number cases. This is again a simplifica- 
tion which can be removed (see Cheng 1963). 

In order to start the numerical procedure one must have a solution which is 
valid near the stagnation point. The ideal method for finding this solution is 
to use the series-truncation method developed by Van Dyke and co-workers. In 
particular the truncated-series method used by Kao (1964) in the compressible 
viscous flow past a sphere is useful. The truncated-series results should be 
particularly good since the form of the truncation is taken to be the same as the 
form of the inviscid constant-density solution. These results are also used for 
comparison with the numerical finite-difference results. 

For the purpose of comparison with the high-Reynolds-number cases the first- 
order boundary-layer equations are also solved for the constant-density flow. 
In  this case Lighthill’s (1957) constant-density solution is used for determining 
the surface-pressure distribution. 

2. Formulation of the problem 
2.1. Co-ordinate system 

Consider laminar hypersonic flow of a viscous fluid past the sphere of radius a* 
shown in figure 1. For simplicity we shall assume that the free-stream Mach num- 
ber M, is infinite and that the density p,* and viscosity& in the flow field behind 
the shock are constants given by their values immediately behind the normal 
shock. The velocity components u* and v* are tangent and normal to the body 
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surface respectively. The co-ordinate n*, is measured normal to the body surfa,ce 
and the angle is measured from the stagnation point to the radius vector. 

FIGURE 1. Co-ordinate system. 

2.2. Dimensionless quantities 

For simplicity the following dimensionless quantities are introduced. These 
quantities are of order one in the boundary-layer region near the surface of the 
sphere. 

N = n* / rag ,  boundary-layer normal co-ordinate, ( 2 . l a )  

a = a*/a* = 1, nose radius, (2 . lb )  

u = u*lUz,  the velocity component parallel to the body surface, (2.1 c) 

( 2 . 1 4  

ps = p,*/pz = 6 ,  the density behind the shock for M, = 00. (2 . l e )  

( T ~ ) ,  = (T& .JRe,/& Uzz  = au/aN, shear stress at the body surface, (2.1 f )  

P = P*/& U.*,z, the pressure, 

Re, = Uza*&/p:, shock Reynolds number. ( 2 . l g )  
The quantity r used in the above relations is defined by 

7 = l/,/Re,. ( 2 . l h )  

2.3. Assumptions 

We shall assume that the constant-density model is applicable. This will be true 
near the stagnation point for a nearly insulaked body. We shall further assume 
that the no-slip conditions apply at  the body surface. These conditions can be 
modified with little difficulty to take care of slip (see Street 1960). We shall also 
assume that the bow shock wave is a discontinuity even though this is not true 
at low Reynolds numbers. This restriction can be removed in a manner similar 
to that of Cheng (1963). All these restrictions are imposed to allow attention to 
be focused on the numerical procedure. The restrictions of constant density, no 
slip, etc., can be removed with little change in the method of solution. These 
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more general calculations, which conform more closely with the real situation, 
are being made a t  present. 

The last assumption is that the angles of inclination of the bow shock wave 
and a tangent drawn to  the body surface are the same for a given value of 4. 
This is similar to assuming a spherical shock except that the distance between 
the body and the shock is allowed to grow. Since the shock is spherical in the 
inviscid case this assumption is very good for high Reynolds numbers. On the 
basis of the numerical calculations we shall see that this is not a bad assumption 
even a t  low Reynolds numbers. We have tried to build up the shock wave in the 
viscous case as the computations proceed downstream ; however, this has led 
to instabilities in the numerical procedure. This point is under study a t  present 
and an attempt is being made to impose the shock conditions in such a way that 
instabilities do not occur. This difficulty must be overcome before other body 
shapes are considered along with a compressible fluid. 

Assumptions similar to some of those made above (i.e. constant density 
etc.) have been made by Probstein & Kemp (1960), Oguchi (1958), and Hoshi- 
zaki (1959) in considering the viscous flow past a sphere. 

2.4. Governing equations and boundary conditions 

Introducing the dimensionless quantities (2.1 a)-(2.1 g )  into the full Navier- 
Stokes equations and neglecting all terms of higher than second order in Reynolds 
number, which appear in both the boundary-layer region near the body and also 
in the inviscid region outside this layer, we can obtain a set of equations similar 
to those given by Davis & Flugge-Lotz (1964). (See their paper for a discussion 
of this approximation.) On making the constant-density approximation we 
obtain the following set of partial-differential equations and boundary conditions: 

Continuity? 
[{( 1 + 7 N )  sin $}u],+, + [(I + 7 N )  ((1 + 7 N )  sin $}v] ,  = 0; (2.2a) 

#-Momentuni 
27 

P d  (2 .2b )  uv  + __ = U”+-- 
7 ) 1+7N 1 + 7 N U N ;  

N -  Momentum 

Surface conditions 

Shock conditions (spherical, Ma = cc) 

u , v =  0 a t  N = 0; 

2 2 
ps=----- sin2 $, 

y + 1  y + l  

(2.2c) 

( 2 . 2 4  

(2.2 e) 

t Subscripts s denote conditions behind the normal shock and subscripts q5 and N 
denote differentiation. 
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The position of the shock will be located by the requirement that the conditions 
(2.2e)-(2.2g) above be satisfied. In  addition, total mass conservation between 
the body and the shock is checked by the condition that 

( 1  + 7NJ2sin Q = 37p, u( 1 + 7 N )  d N .  r (2.2h) 

The value of N, a t  which this condition is satisfied can also be used to determine 
the shock position. 

3. Methods of solution of the governing equation 
3.1. Series trunca.tion method 

In  order to start the numerical finite-difference method it is necessary to have 
an accurate solution for the flow near the stagnation point. The series-truncation 
method developed and applied by Van Dyke and co-workers is ideal for doing this. 
In  the constant-density flow past a sphere it is obvious that the form that one 
should take for the truncation is the form of the constant-density inviscid 
solution of Lighthill (1957). This should be particularly accurate in the high- 
Reynolds-number range when the boundary layer is thin and the shock is nearly 
spherical. The form of the truncation used by Kao (1964) for the compressible 
case is exactly the same as the form which will be used here. Probstein & Kemp 
(1960) and other authors have made similar truncations in solving the same prob- 
lem of constant-density flow past a sphere. 

P ( N ,  Q) = Pl(N)  + P2(N) sin2 Q + . .., ( 3 . 1 ~ )  

zc(N,$) = ul(hT)sin$+ ..., (3 . lb)  

v(N,Q) = - ~ ~ ( N ) c o s $ + . . . .  ( 3 . 1 ~ )  

Substituting these expressions into the continuity and momentum equations 
(2.2a)-(2.2c) and collecting terms, we obtain the following set of ordinary 
differential equations, 

(1 + 7N) V1N - 2(u1 - 7v1) = 0, (3.2a) 

Assume 

PIN - 72psV1vlN = 0. 

The corresponding surface and shock conditions are: 

At the body 

At the shock (spherical, M, = 00) 

u1,v1 = 0 at N = 0; 

l y - 1  
r y + 1 '  

VlS = -__ 

U l S  = 1, 

pz, = -2 / (y+ 11, 

P l S  = 2/(Y + 1). 

(3 .2~)  

(3.2d) 

(3.2e) 
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Finally, conservation of mass requires that 
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(1  + T N , ) ~  = Zrp, al( 1 + r N )  d N .  (3.2j) Lhr8 
It should be noted that the first three differcntial equations (3.2a)-(3.2c) do 

not involve Pl and can therefore be solved independently of Pl. After the solution 
is obtained, Pl can be determined from equation (3.2d). 

The set of equations (3.2a)-(3.2c) is fourth-order. Only two boundary con- 
ditions are given at  the body surface ( N  = 0). The method of solution is to guess 
values for P2 and uIN at the body surface and then to integrate numerically, 
starting from the body surface. Good initial guesses can be made for P2 and 
ulN on the basis of boundary-layer theory. Lighthill’s (1957) inviscid constant- 
density solution along with one term of the Blasius series expansion for the 
boundary-layer equations near the stagnation point provide a fairly good 
initial guess, even in the low-Reynolds-number cases. The integration is carried 
out until the shock condition on u1 is satisfied. Values of v1 and P2 will then be 
determined. Interpolation using Newton’s method will allow the shock con- 
ditions on vl and Pz to be satisfied after a few tries. It was found that mass- 
conservation equation (3.2j) was satisfied to sufficient accuracy. 

The numerical scheme used was the Runge-Kutta-Gill method on an 
I.B.M. 7040 electronic digital computer. Each integration required less than 
1 min computing time, and sufficient accuracy was assured by halving the step 
size until no change in the results was noted in the first four decimal places. 
The numerical results were carried out for values of Re, of 900, 100, and 49 
(r = &, &, and 3). The results of these coniputations will be discussed later 
along with the results from the finite-difference method. The results are in agree- 
ment with those of Probstein & Kemp (1960). 

3.2. Finite-difference method 

The main simplification is to reduce the Navier-Stokes equations governing the 
fluid motion to a set of parabolic partial differential equations so that backward 
influence is eliminated, and so that integration can be performed by starting 
from the stagnation point and integrating downstream along the body surface. 
The first step in doing this is to use the simplified form of the Navier-Stokes 
equations (2.2a)-(2.2c) which retain only terms up to second-order for large 
Reynolds number. The significance of these equations as far as numerical integra- 
tion is concerned has been discussed by Davis & Flugge-Lotz (1964). (A similar 
set of equations has been used by Cheng 1963.) The method of solution used is 
similar to the implicit finite-difference method developed by Flugge-Lotz & 
Blottner (1962) for solving the boundary-layer equations. For details of the 
method one is referred to Blugge-Lotz & Blottner (1962) and Davis & Fliigge- 
Lotz (1964). 

A three-point backward difference scheme in the #-direction is used for high 
accuracy in evaluating the derivatives in the #-direction (see Davis & Fliigge- 
Lotz 1964). In  the discussion that follows no mention will be made of the dif- 
ferences in the N-direction, since the method for handling these is exactly the 
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same as the method used by Flugge-Lotz & Blottner (1962) or Davis & Fliigge- 
Lotz (1964). 

The flow field between the body and the shock is overlaid with a grid of lines 
parallel to the N -  and +co-ordinate lines, respectively. It is assumed that the 
spacing (A$ and A N )  between the grid lines is constant. Grid lines normal to 
the body surface, i.e. lines of constant Q, are denoted with a subscript m. It 
is assumed that flow quantities are known initially (from the series-truncation 
solution) along the grid lines Q = q5m and q5 = q5m-1. The unknown quantities are 
then at 4 = q5m+l = $m + AQ. A difference equation can then be obtained from 
the q5 momentum equation at the point 4 = q5m+l in the same manner as that used 
by Davis & Flugge-Lotz (1964) on the boundary-layer equations. This difference 
equation is linearized by replacing non-linear quantities like ~ ~ + ~ ( a u / a N ) , + ,  by 
(2v,, - vn8-,) (au/&”,+,. By linearizing in this manner we eliminate the unknown 
quantity v,+, from the momentum equation. The only two remaining unknowns 
in that equation are then u and P. We further simplify the equation by elimina- 
ting P+,n+l, using the relation 

P+m+1 = 2P#rn-P$n?-1+ O ( A P ) *  (3.3) 

By writing (au/aN),+,, (a2u)/aN2),+, etc. in difference form in the N-direction, 
we now have an equation for the determination of u only at the station m+ 1. 
This involves the solution of simultaneous algebraic equations; however, the 
method of solution is simple and direct (see R,ichtmyer 1957 and Flugge-Lotz & 
Blottner 1962). 

After urn+, has been determined at all points across the shock layer urn+, can 
be determined from the continuity equation by numerical integration. This is 

where all terms on the right-hand side are known and v,+, can then be determined 
by integrating to the value of h’ corresponding to the grid point of interest. 
The derivative inside the integral is evaluated by using a three-point backward 
difference quotient, and the integration is then performed by using the trape- 
zoidal or some other integration formula. 

Now that v,+, has been determined at  all points across the shock layer at  
station m + 1,  we may determine e,,+,. This is done in the same manner as was 
used for urn+, but by integrating the N-momentum equation. This gives 

where P, is the pressure at the body surface, and is determined by making the 
above equation satisfy the correct condition on pressure at the shock. It was 
found that, near the stagnation point, the inclusion of the second two terms 
of the integrand in equation (3.5) led to numerical instabilities. For this reason 
they were neglected in the finite-difference calculations but were then included 
in a second iteration in determining the pressure. This assumption is consistent 
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with thin shock-layer theory and gives excellent agreement with the series- 
truncation results. The adequacy of equation (3.3) in determining the pressure 
gradient a t  the station m + 1 was also checked by iteration at station m + 1, and 
it was found that there was very little change in the results for the pressure 
distribution. 

1.18 

1.16 

1.14 

1.12 

1.10 

1.08 

1-06 

1.04 

1.02 

1.00 

* 

Re, = 49 
100 

900 
- 

- 

- 'Lighthill's constant density solution 

- 
- 

- 

- 

I 1 I I I I 1 

0 0.1 0.2 0 3  0.4 0.5 0.6 0.7 08  

0 0.2 0 4  0.6 0.8 
'U 

FIGURE 3 (a).  Velocity distribution in the shock layer for Re, = 49. __ , Finite- 
difference method; - - - , truncated-series method. 
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Using the solution obtained in the manner above as a first step it may be pos- 
sible to build up a more exact solution to the Navier-Stokes equations by an 
iteration procedure. This possibility is being considered at the present time in 
addition to the extension of the numerical method to a compressible fluid. 

u 

FIGURE 3 (b) .  Velocity distribution in the shock layer for Re, = 100. 
-, Finite-difference method; - - -, truncated-series method. 
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FIUERE 3(0). Velocity distribution in the shock layer for Re, = 900. - , Finite- 
difference method; - - - -, truncated-series method; -- -- Lighthill’s constant-density 
solution. 
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4. Results 
The results for the solutions using both the series-truncation method and the 

finite-difference method are shown in figures 2-5. 
Figure 2 indicates that at  high Reynolds number the shock is spherical, as 

Lighthill's (1957) inviscid solution indicates. Even in the low-Reynolds-number 
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FIGURE 4 ( a ) .  Variation of skin friction for Re, = 49. 
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FIGURE 4 ( b ) .  Variation of skin friction for Re, = 100. 
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cases, however, the deviation from a spherical shock is small. This gives an 
indication that the assumption of a spherical shock is a good one. 

Figures 3(a)-(c) show the u-component of velocity between the body and 
the shock. One can see from the figures that the results from the series-truncation 
method and the finite-difference method are in close agreement for small $. 
This is what one would expect, since only one term is used in the series-truncation 
method. One also notices that in going to the higher Reynolds numbers one has 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

$ 
FIGURE 4(c). Variation of skin friction for Re, = 900. 
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FIGURE 4 (d). Variation of skin friction at various Reynolds numbers. 
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P 

FIGURE 5(a).  Pressure distribution for the flow with Re, = 49.-, Finite-difference 
method; - - -, truncated-series method. 
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FIGURE 5 ( b ) .  Pressure distribution for the flow with Re, = 100. - , Finite-difference 

method; - - - -, truncated-series method. 
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the clear indication of the formation of a boundary layer. However, even in the 
case of Reynolds number of 100 the indication is that the viscous effects extend 
over most of the shock layer. Figure 3(c) (Re, = 900) has a comparison with 
Lighthill’s (1957) constant-density inviscid solution. In  the inviscid part of the 
flow field one sees that there is good agreement between the two solutions. If 
one includes the effect of displacement thickness to obtain the inviscid solution, 
one finds almost exact agreement in the inviscid region. 

Figures 4 (a)-(d) show the variation of skin friction over the sphere. As one 
would expect the truncated-series method and the finite-difference method agree 
well only near the stagnation point. Figure 4(d) shows the results from the 
finite-difference method for the full shock layer as compared with the finite- 
difference method used on the boundary-layer equations. One sees that the 
agreement is good at high Reynolds numbers. The boundary-layer solution was 
obtained by using Lighthill’s (1957) constant-density solution to obtain the 
pressure distribution on the sphere. 

Finally, figures 5(a)-(d) show pressure distributions for the flow past the 
sphere. Figures 5 (a)-(c) show pressure distributions across the shock layer. 
The agreement between the truncated-series method and the finite-difference 
method is excellent for all positions in the shock layer. The fact that the pressure 
agreement between the two methods is so good is due to the fact that the pressure 
distribution across the viscous region (boundary layer) is essentially constant. 
This means that, since the form of the truncation was taken to be the same as 
the constant-density inviscid flow, one would expect good agreement in the 
pressures. Figure 5 (d) shows the surface-pressure distribution on the sphere. 
The difference between the finite-difference method and truncated-series method 
is so slight that it cannot be detected on the plot. It can be seen that the 
pressure distribution is going towards Lighthill’s constant-density solution as 
Reynolds number increases. This is as one would expect, since Lighthill’s pressure 
distribution should be valid for infinite Reynolds number. 

5. Conclusions 
It has been demonstrated that it is possible to integrate numerically a set 

of equations valid in the entire shock layer which are an approximation to 
the Navier-Stokes equations for high Reynolds number. These equations are 
integrated by starting at the stagnation point and integrating downstream 
with the use of an implicit finite-difference method. The case considered was for 
the constant-density viscous flow past a sphere ; however, the method for handling 
the compressible case is completely analogous. The results obtained agree with 
those obtained from the series-truncation solution and also with the inviscid 
constant-density solution of Lighthill (1957) when the Reynolds number is 
high enough. Effects such as shock structure and slip have not been included; 
however, they can be considered easily, since the numerical procedure for solving 
the governing equations is now clear. 

In  the future the method can be used for determining solutions to problems 
such as the flow far downstream on a hyperboloid in compressible supersonic 
Aow. From the boundary-layer point of view it is not clear what the solution is 
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in the region where the entropy layer and boundary layer merge. The method 
used here is not concerned with these difficulties since the entire shock layer is 
treated a t  once. 

This research was supported in part by NASA Grant SC-NGR-47-004-006. 
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